DocumentCode :
2182031
Title :
On depth-reduction and grates
Author :
Schnitger, Georg
fYear :
1983
fDate :
7-9 Nov. 1983
Firstpage :
323
Lastpage :
328
Abstract :
For each ε(0 ≤ ε ≪ 1) a family Gn =(V(Gn), E(Gn)) of a cyclic digraphs can be constructively defined having the following properties: (a) #V(Gn) ≤ n ¿ 2n+2 (b) degree (Gn) ≤ constant (c) it is necessary to remove Ω(n ¿ 2n) edges in order to reduce the depth of Gn to (2n)ε. It is then shown: For suitable constants c1, C2 ≫ 0, there are (fn, n)- grates (see Definition 1) of size linear in n, where fn(x):= c1 ¿ n2 x ≤ c2 ¿ n/0 otherwise
Keywords :
Computational modeling; Computer science; Game theory; Polynomials; Turing machines; Upper bound; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Foundations of Computer Science, 1983., 24th Annual Symposium on
Conference_Location :
Tucson, AZ, USA
ISSN :
0272-5428
Print_ISBN :
0-8186-0508-1
Type :
conf
DOI :
10.1109/SFCS.1983.38
Filename :
4568095
Link To Document :
بازگشت