• DocumentCode
    2199479
  • Title

    An efficient SMO-like algorithm for multiclass SVM

  • Author

    Aiolli, Fahio ; Sperduti, Alessandro

  • Author_Institution
    Dipt. di Informatica, Pisa, Italy
  • fYear
    2002
  • fDate
    2002
  • Firstpage
    297
  • Lastpage
    306
  • Abstract
    Starting from a reformulation of Cramer and Singer (see Journal of Machine Learning Research, vol.2, p.265-92, Dec. 2001) multiclass kernel machine, we propose a sequential minimal optimization (SMO) like algorithm for incremental and fast optimization of the Lagrangian. The proposed formulation allowed us to define very effective new pattern selection strategies which lead to better empirical results.
  • Keywords
    optimisation; signal classification; virtual machines; cooling schemes; digit recognition datasets; efficient SMO-like algorithm; equential minimal optimization; fast optimization; incremental optimization; multiclass SVM; multiclass classification; multiclass kernel machine; pattern selection; Kernel; Lagrangian functions; Prototypes; Support vector machine classification; Support vector machines;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks for Signal Processing, 2002. Proceedings of the 2002 12th IEEE Workshop on
  • Print_ISBN
    0-7803-7616-1
  • Type

    conf

  • DOI
    10.1109/NNSP.2002.1030041
  • Filename
    1030041