DocumentCode
2201603
Title
Computation by multi-head finite automata
Author
Sudborough, I.H.
fYear
1971
fDate
13-15 Oct. 1971
Firstpage
105
Lastpage
113
Abstract
Families of languages recognized by multi-head writing finite automata are considered. For n≥1, an n-head writing finite automaton (n-wfa) is a finite state device with n one-way read-write heads on a single input tape. Relationships between families of languages recognized by n-wfa (Wn) and other models (e.g. n-head nonwriting finite automata, linear-bounded automata, and real-time buffer automata) are established. A complexity measure is defined for computations by two-head writing finite automata. This measure is obtained from a sequence which encodes the motion of the two heads. A relationship between complexity classes for 2-wfa and one-tape off-line Turing machines is then derived. Using this relationship, a number of sets are shown to be unrecognizable by any 2-wfa. The incomparability of W2 and families of languages recognized by pushdown automata, n-head pushdown automata, and one-way stack automata is thereby established.
Keywords
Automata; Computer science; Encoding; Length measurement; Magnetic heads; Motion measurement; Turing machines; Writing;
fLanguage
English
Publisher
ieee
Conference_Titel
Switching and Automata Theory, 1971., 12th Annual Symposium on
Conference_Location
East Lansing, MI, USA
ISSN
0272-4847
Type
conf
DOI
10.1109/SWAT.1971.8
Filename
4569668
Link To Document