DocumentCode :
2210080
Title :
A hierarchical phrase-based model for English-Persian statistical machine translation
Author :
Mohaghegh, Mahsa ; Sarrafzadeh, Abdolhossein
Author_Institution :
Sch. of Eng. & Adv. Technol., Massey Univ., Auckland, New Zealand
fYear :
2012
fDate :
18-20 March 2012
Firstpage :
205
Lastpage :
208
Abstract :
In this paper we show that a hierarchical phrase-based translation system will outperform a classical (non-hierarchical) phrase-based system in the English-to-Persian translation direction, yet for the Persian-to-English direction, the classical phrase-based system is preferable. We seek to explain why this is so, and detail a series of translation experiments with our SMT system using various bilingual corpora each with both toolkits Moses (non-hierarchical) and Joshua (hierarchical).
Keywords :
language translation; statistical analysis; English-Persian statistical machine translation; English-to-Persian translation direction; Joshua; Moses; Persian-to-English direction; SMT system; bilingual corpora; hierarchical phrase-based model; hierarchical phrase-based translation system; Computational modeling; Data models; Decoding; Grammar; NIST; Probability; Training; hierarchical phrase-based models; natural language processing; statistical machine translation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Innovations in Information Technology (IIT), 2012 International Conference on
Conference_Location :
Abu Dhabi
Print_ISBN :
978-1-4673-1100-7
Type :
conf
DOI :
10.1109/INNOVATIONS.2012.6207733
Filename :
6207733
Link To Document :
بازگشت