DocumentCode :
2223747
Title :
Optimisation of absorption efficiency for varying dielectric spherical nanoparticles
Author :
Blaber, Martin G. ; Harris, Nadine ; Ford, Michael J. ; Cortie, Michael B.
Author_Institution :
Inst. for Nanoscale Technol., Technol. Univ., Sydney, NSW
fYear :
2006
fDate :
3-7 July 2006
Abstract :
In this paper we compare the optical absorption for nanospheres made from a range of transition and alkali metals from Li (A=3) to Au (A=79). Numerical solutions to Mie theory were used to calculate the absorption efficiency, Qabs, for nanospheres varying in radii between 5 nm and 100 nm in vacuum. We show that, although gold is the most commonly used nanoparticle material, its absorption efficiency at the plasmon resonance is not as strong as materials such as the alkali metals. Of all the materials tried, potassium spheres with a radius of 21 nm have an optimum absorption efficiency of 14.7. In addition we also show that, unlike gold, the wavelength of the plasmon peak in other materials is sensitive to the sphere radius. In potassium the peak position shifts by 100 nm for spheres ranging from 5 nm to 65 nm, the shift is less than 10 nm for gold spheres.
Keywords :
dielectric properties; gold; light absorption; lithium; nanoparticles; plasmons; potassium; 5 to 65 nm; Au; Li; absorption efficiency; dielectric spherical nanoparticles; optimisation; plasmon; Dielectrics; Electromagnetic wave absorption; Gold; Mie scattering; Nanoparticles; Optical scattering; Optical sensors; Particle scattering; Plasmons; Resonance light scattering;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Nanoscience and Nanotechnology, 2006. ICONN '06. International Conference on
Conference_Location :
Brisbane, Qld.
Print_ISBN :
1-4244-0452-5
Electronic_ISBN :
1-4244-0452-5
Type :
conf
DOI :
10.1109/ICONN.2006.340677
Filename :
4143457
Link To Document :
بازگشت