DocumentCode :
2230252
Title :
Automatic Citation Metadata Extraction Using Hidden Markov Models
Author :
Ni, Zhen ; Xu, Hong
Author_Institution :
Sch. of Comput. Sci. & Eng., BeiHang Univ., Beijing, China
fYear :
2009
fDate :
26-28 Dec. 2009
Firstpage :
802
Lastpage :
805
Abstract :
Automatic citation metadata extraction is an important aspect of digital library development. The previous methods which using hidden Markov models to extract citation metadata mostly need label many training data manually. To save the high cost of labeling training data manually, this paper describes a method for citation metadata extraction using hidden Markov models. This method use unlabeled data (plain texts which we want to extract metadata) as training data. The results of experiment show that our method has good performance in precision and recall.
Keywords :
citation analysis; digital libraries; hidden Markov models; meta data; automatic citation meta data extraction; digital library development; hidden Markov models; labeling training data manually; unlabeled data; Citation analysis; Computer science; Costs; Data mining; Hidden Markov models; Information science; Labeling; Software libraries; Statistics; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Science and Engineering (ICISE), 2009 1st International Conference on
Conference_Location :
Nanjing
Print_ISBN :
978-1-4244-4909-5
Type :
conf
DOI :
10.1109/ICISE.2009.353
Filename :
5455433
Link To Document :
بازگشت