DocumentCode :
2246975
Title :
Parameter estimation of non-linear systems with Hammerstein models using neuro-fuzzy and polynomial approximation approaches
Author :
Vieira, José ; Mota, Alexandre
Author_Institution :
Dept. de Engenharia Electrotecnica, Escola Superior de Tecnologia de Castelo Branco, Portugal
Volume :
2
fYear :
2004
fDate :
25-29 July 2004
Firstpage :
849
Abstract :
This paper presents two different approaches for parameter estimation of non-linear systems with Hammerstein models. The Hammerstein model consists in the cascade connection of two blocks: a non-linear static part and a linear dynamic part. For modelling the non-linear static function part two different techniques were used: neuro-fuzzy and polynomial approximation approaches. The neuro-fuzzy Hammerstein model (NFHM) approach uses a zero-order Takagi-Sugeno fuzzy model to approximate the non-linear static part and is tuned using gradient decent algorithm. The polynomial approximation Hammerstein model (PAHM) approach uses a polynomial of order n to approximate the non-linear static part and is tuned using a least squares algorithm. For the linear dynamic part both algorithms use the least squares parameter estimation. The methods were implemented off-line, in two steps: first, estimation of the non-linear static parameters and second estimation of the linear dynamic parameters. Finally, a gas water heater non-linear system was modelled as an illustrative example of these two approaches.
Keywords :
fuzzy control; fuzzy neural nets; gradient methods; least squares approximations; nonlinear control systems; nonlinear functions; parameter estimation; polynomial approximation; gradient decent algorithm; least squares algorithm; least squares parameter estimation; linear dynamic parameter estimation; neurofuzzy Hammerstein model; nonlinear static function parameter estimation; nonlinear systems; polynomial approximation Hammerstein model; zero order Takagi-Sugeno fuzzy model; Approximation algorithms; Heuristic algorithms; Iterative algorithms; Least squares approximation; Nonlinear control systems; Nonlinear dynamical systems; Parameter estimation; Polynomials; Takagi-Sugeno model; Water heating;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems, 2004. Proceedings. 2004 IEEE International Conference on
ISSN :
1098-7584
Print_ISBN :
0-7803-8353-2
Type :
conf
DOI :
10.1109/FUZZY.2004.1375514
Filename :
1375514
Link To Document :
بازگشت