DocumentCode :
22478
Title :
A Novel Time-Obfuscated Algorithm for Trajectory Privacy Protection
Author :
Ren-Hung Hwang ; Yu-Ling Hsueh ; Hao-Wei Chung
Author_Institution :
Dept. of Comput. Sci. & Inf. Eng., Nat. Chung Cheng Univ., Chiayi, Taiwan
Volume :
7
Issue :
2
fYear :
2014
fDate :
April-June 2014
Firstpage :
126
Lastpage :
139
Abstract :
Location-based services (LBS) which bring so much convenience to our daily life have been intensively studied over the years. Generally, an LBS query processing can be categorized into snapshot and continuous queries which access user location information and return search results to the users. An LBS has full control of the location information, causing user privacy concerns. If an LBS provider has a malicious intention to breach the user privacy by tracking the users´ routes to their destinations, it incurs a serious threat. Most existing techniques have addressed privacy protection mainly for snapshot queries. However, providing privacy protection for continuous queries is of importance, since a malicious LBS can easily obtain complete user privacy information by observing a sequence of successive query requests. In this paper, we propose a comprehensive trajectory privacy technique and combine ambient conditions to cloak location information based on the user privacy profile to avoid a malicious LBS reconstructing a user trajectory. We first propose an r-anonymity mechanism which preprocesses a set of similar trajectories R to blur the actual trajectory of a service user. We then combine k-anonymity with s road segments to protect the user´s privacy. We introduce a novel time-obfuscated technique which breaks the sequence of the query issuing time for a service user to confuse the LBS so it does not know the user trajectory, by sending a query randomly from a set of locations residing at the different trajectories in R. Despite the randomness incurred from the obfuscation process for providing strong trajectory privacy protection, the experimental results show that our trajectory privacy technique maintains the correctness of the query results at a competitive computational cost.
Keywords :
data privacy; mobile computing; query processing; LBS query processing; continuous queries; k-anonymity; location-based services; r-anonymity mechanism; snapshot queries; time-obfuscated algorithm; trajectory privacy protection; user location information; user privacy information; user privacy profile; Correlation; Cryptography; Databases; Privacy; Roads; Servers; Trajectory; Computer society; security and privacy;
fLanguage :
English
Journal_Title :
Services Computing, IEEE Transactions on
Publisher :
ieee
ISSN :
1939-1374
Type :
jour
DOI :
10.1109/TSC.2013.55
Filename :
6682902
Link To Document :
بازگشت