DocumentCode :
2249101
Title :
Trainable classifier-fusion schemes: An application to pedestrian detection
Author :
Ludwig, Oswaldo ; Delgado, David ; Gonçalves, Valter ; Nunes, Urbano
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Coimbra, Coimbra, Portugal
fYear :
2009
fDate :
4-7 Oct. 2009
Firstpage :
1
Lastpage :
6
Abstract :
This work proposes a novel classifier-fusion scheme using learning algorithms, i.e. syntactic models, instead of the usual Bayesian or heuristic rules. Moreover, this paper complements the previous comparative studies on DaimlerChrysler Automotive Dataset, offering a set of complementary experiments using feature extractor and classifier combinations. The experimental results provide evidence of the effectiveness of our methods regarding false positive rate, AUC, and accuracy, which reached 96.67%.
Keywords :
feature extraction; image classification; learning (artificial intelligence); traffic engineering computing; DaimlerChrysler automotive dataset; feature extractor; heuristic rules; learning algorithm; pedestrian detection; syntactic model; trainable classifier-fusion scheme; Automotive engineering; Bagging; Bayesian methods; Boosting; Covariance matrix; Feature extraction; Histograms; Intelligent robots; Intelligent transportation systems; Neural networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Transportation Systems, 2009. ITSC '09. 12th International IEEE Conference on
Conference_Location :
St. Louis, MO
Print_ISBN :
978-1-4244-5519-5
Electronic_ISBN :
978-1-4244-5520-1
Type :
conf
DOI :
10.1109/ITSC.2009.5309700
Filename :
5309700
Link To Document :
بازگشت