DocumentCode :
2251779
Title :
Optimal equalization cost functions and maximum a posteriori estimation
Author :
Lambert, Russell H. ; Nikias, Chrysostomos L.
Author_Institution :
Dept. of Electr. Eng. Syst., Univ. of Southern California, Los Angeles, CA, USA
fYear :
1994
fDate :
2-5 Oct 1994
Firstpage :
291
Abstract :
A new maximum a posteriori (MAP) formulation is shown to be a straightforward and intuitive way to derive optimal blind equalization cost functions. This MAP method provides a general, systematic way to derive blind adaptation methods using the given pdf of the input and a convolutional noise model. A general blind equalization/deconvolution cost function known as Gray´s Variable Norm, is shown to be derivable using the MAP formulation presented here. Gray´s Variable Norm (1979) is a superset of existing blind equalization cost functions, including the Godard and Sato algorithms as special cases. The MAP method is capable of deriving cost functions needed for a wide variety of problems, including those with infinite variance pdfs and even multichannel problems
Keywords :
Gaussian noise; adaptive equalisers; convolution; deconvolution; maximum likelihood estimation; optimisation; Godard algorithm; Gray´s Variable Norm; MAP formulation; Sato algorithm; blind adaptation methods; blind equalization; convolutional noise model; deconvolution; infinite variance pdfs; maximum a posteriori estimation; multichannel problems; optimal equalization cost functions; Additive noise; Blind equalizers; Convolution; Cost function; Deconvolution; Equations; Filters; Maximum a posteriori estimation; Noise level; Probability distribution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Military Communications Conference, 1994. MILCOM '94. Conference Record, 1994 IEEE
Conference_Location :
Fort Monmouth, NJ
Print_ISBN :
0-7803-1828-5
Type :
conf
DOI :
10.1109/MILCOM.1994.473925
Filename :
473925
Link To Document :
بازگشت