DocumentCode :
2254281
Title :
An asymptotic estimate of the numbers of rectangular drawings or floorplans
Author :
Fujimaki, Ryohei ; Inoue, Yasuyuki ; Takahashi, Tatsuro
Author_Institution :
Niigata Univ., Niigata, Japan
fYear :
2009
fDate :
24-27 May 2009
Firstpage :
856
Lastpage :
859
Abstract :
A subdivision of a rectangle into rectangular faces with horizontal and vertical line segments is called rectangular drawings or floorplans. It is known that the number of rectangular drawings R(n) is asymptotically approximated by a geometric progression, where n is the number of inner rectangles. More precisely, there exists a constant c = limnrarrinfin R(n)1/n. The best upper and lower bounds of c ever known are 25 and 11.56, respectively. In this report, R(n) les 13.5n-1 is shown, which implies c les 13.5.
Keywords :
circuit layout; geometry; asymptotic approximation; asymptotic estimate; floorplan rectangular drawings; geometric progression; Polynomials; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on
Conference_Location :
Taipei
Print_ISBN :
978-1-4244-3827-3
Electronic_ISBN :
978-1-4244-3828-0
Type :
conf
DOI :
10.1109/ISCAS.2009.5117891
Filename :
5117891
Link To Document :
بازگشت