DocumentCode :
2259732
Title :
Statistical image modeling with the magnitude probability density function of complex wavelet coefficients
Author :
Rakvongthai, Yothin ; Oraintara, Soontorn
Author_Institution :
Dept. of Electr. Eng., Univ. of Texas, Arlington, TX, USA
fYear :
2009
fDate :
24-27 May 2009
Firstpage :
1879
Lastpage :
1882
Abstract :
We derive the probability density function (pdf) of the magnitude of complex wavelet coefficients with the assumption that each of the real and imaginary parts is characterized by the generalized Gaussian distribution (GGD) model. The parameter estimation method using maximum likelihood for the derived pdf is presented. The derived pdf fits acceptably well with the actual coefficient magnitude of images. To show the usefulness of the derived pdf, we use it to model the magnitude of complex coefficients of texture images for an application in texture image retrieval. The experimental results show that using the derived magnitude pdf yields higher retrieval rate than using the GGD model to fit with the real part or imaginary part of coefficients, and than using the mean and standard deviation of the magnitude of coefficients.
Keywords :
Gaussian distribution; image retrieval; image texture; statistical analysis; wavelet transforms; complex wavelet coefficients; generalized Gaussian distribution; magnitude probability density function; maximum likelihood; statistical image modeling; texture image retrieval; Discrete wavelet transforms; Gaussian distribution; Hidden Markov models; Image retrieval; Maximum likelihood estimation; Probability density function; Statistical distributions; Wavelet analysis; Wavelet coefficients; Wavelet domain;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on
Conference_Location :
Taipei
Print_ISBN :
978-1-4244-3827-3
Electronic_ISBN :
978-1-4244-3828-0
Type :
conf
DOI :
10.1109/ISCAS.2009.5118146
Filename :
5118146
Link To Document :
بازگشت