DocumentCode :
2262935
Title :
Composite autoregressive system for sparse source-filter representation of speech
Author :
Kameoka, Hirokazu ; Kashino, Kunio
Author_Institution :
NTT Commun. Sci. Labs., NTT Corp., Atsugi, Japan
fYear :
2009
fDate :
24-27 May 2009
Firstpage :
2477
Lastpage :
2480
Abstract :
This paper presents a new generative model for speech signals called a ldquocomposite autoregressive systemrdquo. This model consists of a composite dictionary incorporating a set of the power spectral densities (PSDs) of excitation sources and a set of all-pole filters where the gain of each pair of excitation and filter elements is allowed to vary over time. We use this model to develop a computationally efficient scheme for generating a sparse mixture representation of speech based on the Expectation-Maximization algorithm. The algorithm iteratively updates the excitation PSDs and the gains through the update formulae, which reduce under a particular condition to the multiplicative update rule for non-negative matrix factorization with the Itakura-Saito distance criterion, and the all-pole parameters using the Levinson-Durbin algorithm.
Keywords :
autoregressive processes; sparse matrices; speech processing; Itakura-Saito distance criterion; Levinson-Durbin algorithm; composite autoregressive system; power spectral densities; sparse mixture representation; sparse source-filter; speech representation; Dictionaries; Iterative algorithms; Nonlinear filters; Power system modeling; Signal analysis; Signal generators; Sparse matrices; Speech analysis; Speech processing; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on
Conference_Location :
Taipei
Print_ISBN :
978-1-4244-3827-3
Electronic_ISBN :
978-1-4244-3828-0
Type :
conf
DOI :
10.1109/ISCAS.2009.5118303
Filename :
5118303
Link To Document :
بازگشت