• DocumentCode
    2263441
  • Title

    A new normalized minimum-error entropy algorithm with reduced computational complexity

  • Author

    Bhotto, Md Zulfiquar Ali ; Antoniou, Andreas

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Univ. of Victoria, Victoria, BC, Canada
  • fYear
    2009
  • fDate
    24-27 May 2009
  • Firstpage
    2561
  • Lastpage
    2564
  • Abstract
    A new normalized minimum-error entropy (NMEE) algorithm is proposed as an alternative to the minimum-error entropy (MEE) and the minimum-error entropy with self-adjusting step size (MEE-SAS) algorithms. The proposed NMEE algorithm requires fewer iterations and less computation to converge and yields lower misadjustment as compared to those of the MEE and the MEE-SAS algorithms.
  • Keywords
    adaptive filters; computational complexity; convergence of numerical methods; mean square error methods; minimum entropy methods; NMEE; adaptive filter; computational complexity; mean square error method; minimum-error entropy-with-self adjusting step size algorithm; normalized minimum-error entropy algorithm; numerical convergence; Adaptive filters; Computational complexity; Convergence; Entropy; Higher order statistics; Kernel; Noise robustness; Quantization; Statistical distributions; Stochastic processes; Adaptive filters; MEE algorithms with self-adjusting step size; minimum-error entropy (MEE) algorithms; normalized MEE algorithms;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Circuits and Systems, 2009. ISCAS 2009. IEEE International Symposium on
  • Conference_Location
    Taipei
  • Print_ISBN
    978-1-4244-3827-3
  • Electronic_ISBN
    978-1-4244-3828-0
  • Type

    conf

  • DOI
    10.1109/ISCAS.2009.5118324
  • Filename
    5118324