• DocumentCode
    226485
  • Title

    Optimal finite-horizon control with disturbance attenuation for uncertain discrete-time T-S fuzzy model based systems

  • Author

    Wen-Ren Homg ; Jyh-Horng Chou ; Chun-Hsiung Fang

  • Author_Institution
    Dept. of Electr. Eng., Nat. Kaohsiung Univ. of Appl. Sci., Kaohsiung, Taiwan
  • fYear
    2014
  • fDate
    6-11 July 2014
  • Firstpage
    2006
  • Lastpage
    2009
  • Abstract
    In this paper, the sufficiency condition for disturbance attenuation level for uncertain discrete-time T-S fuzzy model-based system is derived by non-quadratic Lypaunov function (NQLF) and is expressed in terms of LMIs. And the quadratic finite horizon performance index optimal robust control with disturbance attenuation level for uncertain T-S fuzzy system can be formulated into static constrained optimization problem. Then, for static constrained optimization problem, the genetic algorithm is employed to search feedback gain for optimal finite quadratic performance index of uncertain discrete-time TS fuzzy model. Thus, the problem solving can be greatly simplified.
  • Keywords
    Lyapunov methods; discrete time systems; feedback; fuzzy control; genetic algorithms; linear matrix inequalities; optimal control; robust control; uncertain systems; LMIs; NQLF; Takagi-Sugeno systems; disturbance attenuation level; feedback gain; genetic algorithm; linear matrix inequalities; nonquadratic Lypaunov function; optimal finite quadratic performance index; optimal finite-horizon control; optimal robust control; static constrained optimization problem; uncertain discrete-time T-S Fuzzy model; Attenuation; Fuzzy systems; Lyapunov methods; Optimization; Performance analysis; Robustness; Uncertainty; H control; LMI; T-S fuzzy models; finite horizon optimal control; hybrid-Taguchi genetic algorithm; non-quadrtaic Lyapunov function;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on
  • Conference_Location
    Beijing
  • Print_ISBN
    978-1-4799-2073-0
  • Type

    conf

  • DOI
    10.1109/FUZZ-IEEE.2014.6891566
  • Filename
    6891566