• DocumentCode
    2267669
  • Title

    Generalized signed-digit multiplication and its systolic realizations

  • Author

    Hung, Ching Yu ; Parhami, Behrooz

  • Author_Institution
    Dept. of Electr. & Comput. Eng., California Univ., Santa Barbara, CA, USA
  • fYear
    1993
  • fDate
    16-18 Aug 1993
  • Firstpage
    1505
  • Abstract
    A generalized signed-digit (GSD) number system is a fixed-radix number system, with radix r and digit set {-α, -α+1, ..., β-1, β}, where α⩾O, β⩾0, and α+β+1>r. The redundancy of GSD number systems allows digit-parallel addition, based on which linear-time algorithms for multiplication are devised. Systolic and semisystolic schedules derived from these algorithms lead to the design of one-dimensional and two-dimensional array multipliers that have O(n) latency for n-digit operands
  • Keywords
    computational complexity; digital arithmetic; redundant number systems; systolic arrays; O(n) latency; digit-parallel addition; fixed-radix number system; generalised signed-digit multiplication; linear-time algorithms; n-digit operands; one-dimensional array multipliers; redundancy; semisystolic schedules; systolic realizations; two-dimensional array multipliers; Algorithm design and analysis; Arithmetic; Concurrent computing; Delay; Design methodology; Processor scheduling; Scheduling algorithm; Upper bound;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Circuits and Systems, 1993., Proceedings of the 36th Midwest Symposium on
  • Conference_Location
    Detroit, MI
  • Print_ISBN
    0-7803-1760-2
  • Type

    conf

  • DOI
    10.1109/MWSCAS.1993.343400
  • Filename
    343400