Title :
A learning scheme to Fuzzy C-Means based on a compromise in updating membership degrees
Author :
Shang-Lin Wu ; Yang-Yin Lin ; Yu-Ting Liu ; Chih-Yu Chen ; Chin-Teng Lin
Author_Institution :
Inst. of Electr. Control Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan
Abstract :
Fuzzy C-Means (FCM) clustering is the most well-known clustering method according to fuzzy partition for pattern classification. However, there are some disadvantages of using that clustering method, such as computational complexity and execution time. Therefore, to solve these drawbacks of FCM, the two-phase FCM procedure has been proposed in this study. Compared with the conventional FCM, the usage of a compromised learning scheme makes more adaptive and effective. By performing the proposed approach, the unknown data could be rapidly clustered according to the previous information. A synthetic data set with two dimensional variables is generated to estimate the performance of the proposed method, and to further demonstrate that our method not only reduces computational complexity but economizes execution time compared with the conventional FCM in each example.
Keywords :
computational complexity; learning (artificial intelligence); pattern classification; pattern clustering; compromised learning scheme; computational complexity; fuzzy c-means clustering; fuzzy partition; learning scheme; pattern classification; synthetic data set; two-phase FCM procedure; updating membership degrees; Classification algorithms; Clustering algorithms; Clustering methods; Conferences; Image segmentation; Simulation; Clustering; Data classification; Fuzzy C-Means (FCM); High computational complexity; Long execution time;
Conference_Titel :
Fuzzy Systems (FUZZ-IEEE), 2014 IEEE International Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4799-2073-0
DOI :
10.1109/FUZZ-IEEE.2014.6891773