• DocumentCode
    2284262
  • Title

    Synthesis, fabrication, and characterization of Ge/Si axial nanowire heterostructure tunnel FETs

  • Author

    Dayeh, Shadi A. ; Huang, Jianyu ; Gin, Aaron V. ; Picraux, S.T.

  • Author_Institution
    Los Alamos Nat. Lab., Los Alamos, NM, USA
  • fYear
    2010
  • fDate
    17-20 Aug. 2010
  • Firstpage
    238
  • Lastpage
    241
  • Abstract
    Axial Ge/Si heterostructure nanowires allow energy band-edge engineering along the axis of the nanowire, which is the charge transport direction, and allows the realization of novel asymmetric device architectures. This work reports on two advances in the area of heterostructure nanowires and tunnel FETs: (i) the realization of 100 % compositionally modulated Si/Ge axial heterostructure nanowires with lengths suitable for device fabrication and (ii) the design and implementation of Schottky barrier tunnel FETs on these nanowires for high-on currents and suppressed ambipolar behavior. Initial prototype devices resulted in a current drive in excess of 100 μA/μm (I/πD) and 105 Ion/Ioff ratios. These results demonstrate the potential of such asymmetric heterostructures (both in the semiconductor channel and at the metal-semiconductor interfaces) for low-power and high performance electronics.
  • Keywords
    Schottky barriers; elemental semiconductors; germanium; insulated gate field effect transistors; low-power electronics; nanoelectronics; nanowires; semiconductor quantum wires; silicon; Ge-Si; Schottky barrier tunnel FET; asymmetric heterostructures; axial nanowire heterostructure tunnel FET; device fabrication; heterostructure nanowires; high performance electronics; low-power electronics; metal-semiconductor interfaces; semiconductor channel;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Nanotechnology (IEEE-NANO), 2010 10th IEEE Conference on
  • Conference_Location
    Seoul
  • ISSN
    1944-9399
  • Print_ISBN
    978-1-4244-7033-4
  • Electronic_ISBN
    1944-9399
  • Type

    conf

  • DOI
    10.1109/NANO.2010.5697747
  • Filename
    5697747