• DocumentCode
    22862
  • Title

    Towards an Auto-Associative Topology State Estimator

  • Author

    Krstulovic, Jakov ; Miranda, V. ; Simoes Costa, Antonio J. A. ; Pereira, J.

  • Author_Institution
    TEC (Technol. & Sci.), INESC, Porto, Portugal
  • Volume
    28
  • Issue
    3
  • fYear
    2013
  • fDate
    Aug. 2013
  • Firstpage
    3311
  • Lastpage
    3318
  • Abstract
    This paper presents a model for breaker status identification and power system topology estimation based on a mosaic of local auto-associative neural networks. The approach extracts information from values of the analog electric variables and allows the recovery of missing sensor signals or the correction of erroneous data about breaker status. The results are confirmed by extensive tests conducted on an IEEE benchmark network.
  • Keywords
    circuit breakers; network topology; neural nets; power system management; IEEE benchmark network; analog electric variables; auto-associative topology; breaker status identification; neural networks; power system topology estimation; sensor signals; state estimator; Data models; Network topology; Optimization; Pollution measurement; State estimation; Topology; Training; Autoencoders; neural networks; power system topology; state estimation;
  • fLanguage
    English
  • Journal_Title
    Power Systems, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0885-8950
  • Type

    jour

  • DOI
    10.1109/TPWRS.2012.2236656
  • Filename
    6416996