DocumentCode :
2288367
Title :
A class of fractional random fields for image texture modelling
Author :
Anh, Vo ; Gras, Fabrice ; Tsui, Hung Tat
Author_Institution :
Sch. of Math., Queensland Univ. of Technol., Brisbane, Qld., Australia
fYear :
1994
fDate :
13-16 Apr 1994
Firstpage :
300
Abstract :
Instead of fractional Brownian motion, the authors consider the stochastic operational Laplace equation to model fractal characteristics of image data. Some properties, including the fractal dimension, of the random field generated from the Laplace equation are given. The spectral density of the random field is characterised by two parameters: a scaling exponent and a self-similarity index. A method is described to estimate these two parameters, which can be used to quantify and classify texture data
Keywords :
fractals; image texture; parameter estimation; random processes; stochastic processes; Laplace equation; fractal dimension; fractional random fields; image texture modelling; random field; scaling exponent; self-similarity index; spectral density; stochastic operational Laplace equation; Brownian motion; Fractals; Image texture; Laplace equations; Mathematical model; Mathematics; Parameter estimation; Rough surfaces; Surface roughness; Yield estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Speech, Image Processing and Neural Networks, 1994. Proceedings, ISSIPNN '94., 1994 International Symposium on
Print_ISBN :
0-7803-1865-X
Type :
conf
DOI :
10.1109/SIPNN.1994.344907
Filename :
344907
Link To Document :
بازگشت