DocumentCode :
2289901
Title :
Tracking a large number of objects from multiple views
Author :
Wu, Zheng ; Hristov, Nickolay I. ; Hedrick, Tyson L. ; Kunz, Thomas H. ; Betke, Margrit
Author_Institution :
Department of Computer Science, Boston University, USA
fYear :
2009
fDate :
Sept. 29 2009-Oct. 2 2009
Firstpage :
1546
Lastpage :
1553
Abstract :
We propose a multi-object multi-camera framework for tracking large numbers of tightly-spaced objects that rapidly move in three dimensions. We formulate the problem of finding correspondences across multiple views as a multidimensional assignment problem and use a greedy randomized adaptive search procedure to solve this NP-hard problem efficiently. To account for occlusions, we relax the one-to-one constraint that one measurement corresponds to one object and iteratively solve the relaxed assignment problem. After correspondences are established, object trajectories are estimated by stereoscopic reconstruction using an epipolar-neighborhood search. We embedded our method into a tracker-to-tracker multi-view fusion system that not only obtains the three-dimensional trajectories of closely-moving objects but also accurately settles track uncertainties that could not be resolved from single views due to occlusion. We conducted experiments to validate our greedy assignment procedure and our technique to recover from occlusions. We successfully track hundreds of flying bats and provide an analysis of their group behavior based on 150 reconstructed 3D trajectories.
Keywords :
Biology; Cameras; Computer vision; Image reconstruction; Layout; Multidimensional systems; State estimation; Stress; Surveillance; Trajectory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision, 2009 IEEE 12th International Conference on
Conference_Location :
Kyoto
ISSN :
1550-5499
Print_ISBN :
978-1-4244-4420-5
Electronic_ISBN :
1550-5499
Type :
conf
DOI :
10.1109/ICCV.2009.5459274
Filename :
5459274
Link To Document :
بازگشت