• DocumentCode
    2297191
  • Title

    Modeling text with generalizable Gaussian mixtures

  • Author

    Hansen, Lars ; Sigurdsson, Sigurdur ; Kolenda, Thomas ; Nielsen, Finn Årup ; Kjems, Ulrik ; Larsen, Jan

  • Author_Institution
    Dept. of Math. Modelling, Tech. Univ. Denmark, Lyngby, Denmark
  • Volume
    6
  • fYear
    2000
  • fDate
    2000
  • Firstpage
    3494
  • Abstract
    We apply and discuss generalizable Gaussian mixture (GGM) models for text mining. The model automatically adapts model complexity for a given text representation. We show that the generalizability of these models depends on the dimensionality of the representation and the sample size. We discuss the relation between supervised and unsupervised learning in the test data. Finally, we implement a novelty detector based on the density model
  • Keywords
    Gaussian processes; computational complexity; information retrieval; pattern recognition; unsupervised learning; Web browser; Web visualization; density model based detector; generalized Gaussian mixtures; information retrieval; model complexity; pattern recognition; representation dimension; sample size; supervised learning; test data; test modeling; text mining; text representation; unsupervised learning; Cost function; Detectors; Feature extraction; Histograms; Information retrieval; Large scale integration; Mathematical model; Pattern recognition; Statistics; Supervised learning;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings. 2000 IEEE International Conference on
  • Conference_Location
    Istanbul
  • ISSN
    1520-6149
  • Print_ISBN
    0-7803-6293-4
  • Type

    conf

  • DOI
    10.1109/ICASSP.2000.860154
  • Filename
    860154