DocumentCode :
2313868
Title :
Axiomatic scalar data interpolation on manifolds
Author :
Sander, Oliver ; Caselles, Vicent ; Bertalmio, Marcelo
Author_Institution :
Dept. de Tecnologia, Univ. Pompeu Fabra, Barcelona, Spain
Volume :
3
fYear :
2003
fDate :
14-17 Sept. 2003
Abstract :
We discuss possible algorithms for interpolating data given in a set of curves and/or points in a surface in R3. We propose a set of basic assumptions to be satisfied by the interpolation algorithms which lead to a set of models in terms of possibly degenerate elliptic partial differential equations. The absolute minimal Lipschitz extension model (AMLE) is singled out and studied in more detail. We show experiments illustrating the interpolation of data on the sphere and the torus.
Keywords :
image processing; interpolation; partial differential equations; set theory; absolute minimal Lipschitz extension model; axiomatic scalar data interpolation; elliptic partial differential equations; interpolation algorithms; sphere; torus; Displays; Image coding; Image processing; Interpolation; Level set; Partial differential equations; Stability; Viscosity;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on
ISSN :
1522-4880
Print_ISBN :
0-7803-7750-8
Type :
conf
DOI :
10.1109/ICIP.2003.1247336
Filename :
1247336
Link To Document :
بازگشت