DocumentCode :
2313880
Title :
Improved algorithm for the k-means clustering
Author :
Zhang, Sheng ; Wang, Shouqiang
Author_Institution :
Sch. of Inf. Sci. & Electr. Eng., Shandong Jiaotong Univ., Jinan, China
fYear :
2012
fDate :
6-8 July 2012
Firstpage :
4717
Lastpage :
4720
Abstract :
This paper investigates the standard k-means clustering and gives an improved algorithm based on selecting the initial centers and overcoming the local minimal values. Experiments show that the new algorithm is more effective and can get a better result than the standard k-means clustering.
Keywords :
pattern clustering; improved algorithm; initial center selection; local minimal values; standard k-means clustering; Approximation methods; Clustering algorithms; Educational institutions; Electrical engineering; Information science; Lead; Standards; clustering; clustering center; k-means;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control and Automation (WCICA), 2012 10th World Congress on
Conference_Location :
Beijing
Print_ISBN :
978-1-4673-1397-1
Type :
conf
DOI :
10.1109/WCICA.2012.6359372
Filename :
6359372
Link To Document :
بازگشت