Title :
Variable step-size speech blind separation employing Laplacian normal mixture distribution model
Author :
Zhang, Xueying ; Zhi, Zhenhua ; Zhang, Xiaomei
Author_Institution :
Coll. of Inf. Eng., Taiyuan Univ. of Technol., Taiyuan
fDate :
Nov. 30 2008-Dec. 3 2008
Abstract :
For the blind source separation algorithm, choices of nonlinear function and step-size are very important. In this paper, we propose a novel natural gradient speech blind separation algorithm. The main ingredients are the use of a variable step-size technology and a nonlinear function based on Laplacian normal mixture distribution. Simulation results indicate the proposed method ensures steady state error of algorithm and accelerates convergence speed of algorithm.
Keywords :
blind source separation; nonlinear functions; normal distribution; speech processing; Laplacian normal mixture distribution model; nonlinear function; speech blind source separation algorithm; steady state error; variable step-size technology; Acceleration; Blind source separation; Educational institutions; Laplace equations; Probability density function; Signal processing; Signal processing algorithms; Source separation; Speech; Steady-state;
Conference_Titel :
Circuits and Systems, 2008. APCCAS 2008. IEEE Asia Pacific Conference on
Conference_Location :
Macao
Print_ISBN :
978-1-4244-2341-5
Electronic_ISBN :
978-1-4244-2342-2
DOI :
10.1109/APCCAS.2008.4746140