DocumentCode :
2330149
Title :
Model combination for Speech Recognition using Empirical Bayes Risk minimization
Author :
Deoras, Anoop ; Filimonov, Denis ; Harper, Mary ; Jelinek, Fred
Author_Institution :
Center for Language & Speech Process., Johns Hopkins Univ., Baltimore, MD, USA
fYear :
2010
fDate :
12-15 Dec. 2010
Firstpage :
235
Lastpage :
240
Abstract :
In this paper, we explore the model combination problem for rescoring Automatic Speech Recognition (ASR) hypotheses. We use minimum Empirical Bayes Risk for the optimization criterion and Deterministic Annealing techniques to search through the non-convex parameter space. Our experiments on the DARPA WSJ task using several different language models showed that our approach consistently outperforms the standard methods of model combination that optimize using 1-best hypothesis error.
Keywords :
Bayes methods; annealing; minimisation; risk analysis; speech recognition; DARPA WSJ task; automatic speech recognition; deterministic annealing techniques; empirical Bayes risk minimization; optimization criterion; Deterministic Annealing; Discriminative Model Combination;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Spoken Language Technology Workshop (SLT), 2010 IEEE
Conference_Location :
Berkeley, CA
Print_ISBN :
978-1-4244-7904-7
Electronic_ISBN :
978-1-4244-7902-3
Type :
conf
DOI :
10.1109/SLT.2010.5700857
Filename :
5700857
Link To Document :
بازگشت