DocumentCode :
2332028
Title :
Bayesian L1-Norm Sparse Learning
Author :
Lin, Yuanqing ; Lee, Daniel D.
Author_Institution :
Dept. of Electr. & Syst. Eng., Pennsylvania Univ., Philadelphia, PA
Volume :
5
fYear :
2006
fDate :
14-19 May 2006
Abstract :
We propose a Bayesian framework for learning the optimal regularization parameter in the L1-norm penalized least-mean-square (LMS) problem, also known as LASSO (R. Tibshirani, 1996) or basis pursuit (S.S. Chen et al., 1998). The setting of the regularization parameter is critical for deriving a correct solution. In most existing methods, the scalar regularization parameter is often determined in a heuristic manner; in contrast, our approach infers the optimal regularization setting under a Bayesian framework. Furthermore, Bayesian inference enables an independent regularization scheme where each coefficient (or weight) is associated with an independent regularization parameter. Simulations illustrate the improvement using our method in discovering sparse structure from noisy data
Keywords :
belief networks; inference mechanisms; learning (artificial intelligence); least mean squares methods; Bayesian L1-norm sparse learning; Bayesian inference; least-mean-square; optimal regularization parameter; scalar regularization parameter; Bayesian methods; Laboratories; Least squares approximation; Modeling; Noise level; Parameter estimation; Piecewise linear techniques; Probability distribution; Signal processing; Systems engineering and theory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on
Conference_Location :
Toulouse
ISSN :
1520-6149
Print_ISBN :
1-4244-0469-X
Type :
conf
DOI :
10.1109/ICASSP.2006.1661348
Filename :
1661348
Link To Document :
بازگشت