DocumentCode :
2334205
Title :
CASTRO: robust nonlinear trajectory optimization using multiple models
Author :
McNaughton, Matthew
Author_Institution :
Carnegie Mellon Univ., Pittsburgh
fYear :
2007
fDate :
Oct. 29 2007-Nov. 2 2007
Firstpage :
177
Lastpage :
182
Abstract :
In this paper we present CASTRO, a new approach for achieving robust planned trajectories for nonlinear systems in the presence of modelling uncertainty. With CASTRO, we simultaneously optimize trajectories for multiple copies of the same system model, each using different estimates for the system parameters. The systems are constrained to use the same policy. With an appropriate sampling of system parameters in the optimization problem, the trajectory will be robust when run on the real system, compared to a trajectory optimized with just one model. We present results on a simulated double-link pendulum swing-up problem.
Keywords :
nonlinear systems; optimisation; pendulums; stability; CASTRO; double link pendulum swing up problem; multiple models; nonlinear systems; robust nonlinear trajectory optimization; Control systems; Legged locomotion; Minimax techniques; Nonlinear systems; Power system modeling; Robots; Robust control; Robustness; Trajectory; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on
Conference_Location :
San Diego, CA
Print_ISBN :
978-1-4244-0912-9
Electronic_ISBN :
978-1-4244-0912-9
Type :
conf
DOI :
10.1109/IROS.2007.4399046
Filename :
4399046
Link To Document :
بازگشت