Title :
Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network
Author :
Imoto, Seiya ; Sunyong, Kim ; Goto, Takao ; Aburatani, Sachiyo ; Tashiro, Kousuke ; Kuhara, Satoru ; Miyano, Satoru
Author_Institution :
Inst. of Med. Sci., Univ. of Tokyo, Japan
Abstract :
We propose a new statistical method for constructing a genetic network from microarray gene expression data by using a Bayesian network. An essential point of Bayesian network construction is in the estimation of the conditional distribution of each random variable. We consider fitting nonparametric regression models with heterogeneous error variances to the microarray gene expression data to capture the nonlinear structures between genes. A problem still remains to be solved in selecting an optimal graph, which gives the best representation of the system among genes. We theoretically derive a new graph selection criterion from Bayes approach in general situations. The proposed method includes previous methods based on Bayesian networks. We demonstrate the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae gene expression data newly obtained by disrupting 100 genes.
Keywords :
arrays; belief networks; biology computing; genetics; statistical analysis; Bayesian network; Saccharomyces cerevisiae gene expression data; conditional distribution; genetic network; graph selection criterion; heterogeneous error variances; microarray gene expression data; nonlinear modeling; nonlinear structures; nonparametric heteroscedastic regression; nonparametric regression model fitting; optimal graph; random variable; statistical method; Bayesian methods; Bioinformatics; Data analysis; Gene expression; Genetics; Genomics; Humans; Linear regression; Random variables; Statistical analysis;
Conference_Titel :
Bioinformatics Conference, 2002. Proceedings. IEEE Computer Society
Print_ISBN :
0-7695-1653-X
DOI :
10.1109/CSB.2002.1039344