DocumentCode :
2345747
Title :
Applications of the sum-product theorem in finite fields
Author :
Wigderson, Avi
Author_Institution :
Inst. for Adv. Study, Princeton, NJ
fYear :
0
fDate :
0-0 0
Lastpage :
111
Abstract :
Summary form only given. About two years ago Bourgain, Katz and Tao (2004) proved the following theorem, essentially stating that in every finite field, a set which does not grow much when we add all pairs of elements, and when we multiply all pairs of elements, must be very close to a subfield. Theorem 1: (Bourgain et al., 2004) For every epsi > 0 there exists a delta > 0 such that the following holds. Let F be any field with no subfield of size ges |F|epsi. For every set A sube F, with |F|epsi < |A| < |F|1 - epsi, either the sumset |A + A| > |A|1 + delta or the product set |A times A| > |A|1 + delta. This theorem revealed its fundamental nature quickly. Shortly afterwards it has found many diverse applications, including in number theory, group theory, combinatorial geometry, and the explicit construction of extractors and Ramsey graphs, mostly described in the references below. In my talk I plan to explain some of the applications, as well as to sketch the main ideas of the proof of the sum-product theorem
Keywords :
geometry; group theory; number theory; Ramsey graph; combinatorial geometry; finite fields; group theory; number theory; sum-product theorem; Computational complexity; Entropy; Galois fields; Geometry;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Complexity, 2006. CCC 2006. Twenty-First Annual IEEE Conference on
Conference_Location :
Prague
ISSN :
1093-0159
Print_ISBN :
0-7695-2596-2
Type :
conf
DOI :
10.1109/CCC.2006.9
Filename :
1663730
Link To Document :
بازگشت