DocumentCode :
234726
Title :
Adaptive Central Force Optimization with Variable Population Size
Author :
Liu Jie
Author_Institution :
Coll. of Math. & Stat., Xi´dian Univ., Xi´an, China
fYear :
2014
fDate :
15-16 Nov. 2014
Firstpage :
17
Lastpage :
20
Abstract :
A improving central force optimization algorithm (CFO) is proposed in this paper. New algorithm can adjust the size of population dynamically. With population evolution, algorithm balance the exploration and exploitation effectively. Experiments on 4 test functions show that the new algorithm is able to find good optimal solutions efficiently. Compared with existing algorithms, new algorithm improves solution accuracy with less computational effort.
Keywords :
optimisation; CFO; adaptive central force optimization; population evolution; variable population size; Algorithm design and analysis; Force; Heuristic algorithms; Optimization; Probes; Sociology; Statistics; central force optimization; global optimization; population size;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence and Security (CIS), 2014 Tenth International Conference on
Conference_Location :
Kunming
Print_ISBN :
978-1-4799-7433-7
Type :
conf
DOI :
10.1109/CIS.2014.46
Filename :
7016844
Link To Document :
بازگشت