• DocumentCode
    238552
  • Title

    Leveraging Data-Parallelism in ILUPACK using Graphics Processors

  • Author

    Aliaga, J.I. ; Bollhofer, M. ; Dufrechou, Ernesto ; Ezzatti, Pablo ; Quintana-Orti, Enrique S.

  • Author_Institution
    Dept. de Ing. y Cienc. de los Comput., Univ. Jaime I, Castello de la Plana, Spain
  • fYear
    2014
  • fDate
    24-27 June 2014
  • Firstpage
    119
  • Lastpage
    126
  • Abstract
    In this paper, we address the exploitation of data parallelism for the solution of sparse symmetric positive definite linear systems via iterative methods on Graphics Processing Units (GPUs). In particular, we accelerate the preconditioned CG-based iterative solver underlying the incomplete LU decomposition package (ILUPACK) by off-loading the most expensive computations i.e., The solution of sparse triangular systems and sparse matrix-vector products-to the hardware accelerator. The results collected using GPUs from the two most recent generations from NVIDIA ("Fermi" and "Kepler") and a benchmark test bed of sparse linear systems show that the GPU-enabled implementations deliver a notable reduction of the execution time, while maintaining the convergence rate and numerical properties of the original ILUPACK solver.
  • Keywords
    convergence; coprocessors; iterative methods; mathematics computing; parallel processing; sparse matrices; vectors; Fermi; GPUs; ILUPACK; Kepler; NVIDIA; convergence rate; data parallelism; data-parallelism; execution time; graphics processing units; graphics processors; hardware accelerator; incomplete LU decomposition package; numerical properties; preconditioned CG-based iterative solver; sparse linear systems; sparse matrix-vector products; sparse symmetric positive definite linear systems; sparse triangular systems; Acceleration; Graphics processing units; Iterative methods; Kernel; Linear systems; Sparse matrices; Vectors; GPU; Sparse linear systems; conjugate gradient (CG) method; incomplete LU factorization; iterative solvers;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Parallel and Distributed Computing (ISPDC), 2014 IEEE 13th International Symposium on
  • Conference_Location
    Marseilles
  • Print_ISBN
    978-1-4799-5918-1
  • Type

    conf

  • DOI
    10.1109/ISPDC.2014.19
  • Filename
    6900209