• DocumentCode
    239069
  • Title

    An archive based particle swarm optimisation for feature selection in classification

  • Author

    Bing Xue ; Qin, A.K. ; Mengjie Zhang

  • Author_Institution
    Sch. of Eng. & Comput. Sci., Victoria Univ. of Wellington, Wellington, New Zealand
  • fYear
    2014
  • fDate
    6-11 July 2014
  • Firstpage
    3119
  • Lastpage
    3126
  • Abstract
    Feature selection aims to select a subset of relevant features from typically a large number of original features, which is a difficult task due to the large search space. Particle swarm optimisation (PSO) is a powerful search technique, but there are some limitations on using the standard PSO for feature selection. This paper proposes a new PSO based feature selection approach, which introduces an external archive to store promising solutions obtained during the search process. The solutions in the archive serve as potential leaders (i.e. global best, gbest) to guide the swarm to search for an optimal feature subset with the lowest classification error rate and a smaller number of features. The proposed approach has two specific methods, PSOArR and PSOArRWS, where PSOArR randomly selects gbest from the archive and PSOArRWS uses the roulette wheel selection to select gbest considering both the classification error rate and also considering the number of selected features. Experiments on twelve benchmark datasets show that both PSOArR and PSOArRWS can successfully select a smaller number of features and achieve similar or better classification performance than using all features. PSOArR and PSOArRWS outperform a PSO based algorithm without using an archive and two traditional feature selection methods. The performance of PSOArR and PSOArRWS are similar to each other.
  • Keywords
    feature selection; particle swarm optimisation; pattern classification; PSOArR; PSOArRWS; archive based particle swarm optimisation; classification error rate; feature selection; gbest; roulette wheel selection; Accuracy; Educational institutions; Error analysis; Optimization; Scattering; Training; Wheels;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Evolutionary Computation (CEC), 2014 IEEE Congress on
  • Conference_Location
    Beijing
  • Print_ISBN
    978-1-4799-6626-4
  • Type

    conf

  • DOI
    10.1109/CEC.2014.6900472
  • Filename
    6900472