DocumentCode :
2395457
Title :
Parameters Selection of Support Vector Machine Using an Improved PSO Algorithm
Author :
Pan Lei ; Luo Yi
Author_Institution :
Dept. of Cybern. Theor. & Technol., North China Electr. Power Univ., Beijing, China
Volume :
2
fYear :
2010
fDate :
26-28 Aug. 2010
Firstpage :
196
Lastpage :
199
Abstract :
The paper is mainly about the application of Particle Swarm Optimization (PSO) algorithm to specify parameters of Support Vector Machine (SVM). In this paper, sparseness of SVM´s solution was introduced to improve fitness function of PSO algorithm. Summation of empirical risk and count of support vectors divided by training set´s size was employed as fitness function. Simulation results proved that the improved PSO-SVM algorithm avoided “over-fitting problem” in parameter optimization process, and prediction precision of SVM was guaranteed.
Keywords :
particle swarm optimisation; support vector machines; improved PSO algorithm; parameter optimization; parameters selection; particle swarm optimization algorithm; support vector machine; Approximation algorithms; Approximation methods; Kernel; Prediction algorithms; Risk management; Support vector machines; Training; Particle Swarm Optimization (PSO); Support Vector Machine (SVM); parameter optimization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2010 2nd International Conference on
Conference_Location :
Nanjing, Jiangsu
Print_ISBN :
978-1-4244-7869-9
Type :
conf
DOI :
10.1109/IHMSC.2010.149
Filename :
5590582
Link To Document :
بازگشت