• DocumentCode
    2402168
  • Title

    Learning patch correspondences for improved viewpoint invariant face recognition

  • Author

    Ashraf, Ahmed Bilal ; Lucey, Simon ; Chen, Tsuhan

  • Author_Institution
    Carnegie Mellon Univ., Pittsburgh, PA
  • fYear
    2008
  • fDate
    23-28 June 2008
  • Firstpage
    1
  • Lastpage
    8
  • Abstract
    Variation due to viewpoint is one of the key challenges that stand in the way of a complete solution to the face recognition problem. It is easy to note that local regions of the face change differently in appearance as the viewpoint varies. Recently, patch-based approaches, such as those of Kanade and Yamada, have taken advantage of this effect resulting in improved viewpoint invariant face recognition. In this paper we propose a data-driven extension to their approach, in which we not only model how a face patch varies in appearance, but also how it deforms spatially as the viewpoint varies. We propose a novel alignment strategy which we refer to as ldquostack flowrdquo that discovers viewpoint induced spatial deformities undergone by a face at the patch level. One can then view the spatial deformation of a patch as the correspondence of that patch between two viewpoints. We present improved identification and verification results to demonstrate the utility of our technique.
  • Keywords
    face recognition; alignment strategy; patch correspondences; spatial deformation; stackflow; viewpoint invariant face recognition; Deformable models; Face recognition; Geometry; Head; Humans; Image recognition; Lighting; Nose; Power system modeling; Probes;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on
  • Conference_Location
    Anchorage, AK
  • ISSN
    1063-6919
  • Print_ISBN
    978-1-4244-2242-5
  • Electronic_ISBN
    1063-6919
  • Type

    conf

  • DOI
    10.1109/CVPR.2008.4587754
  • Filename
    4587754