• DocumentCode
    240258
  • Title

    Background subtraction method using codebook-GMM model

  • Author

    SeungJong Noh ; Deayoung Shim ; Moongu Jeon

  • Author_Institution
    Sch. of Inf. & Commun., Gwangju Inst. of Sci. & Technol., Gwangju, South Korea
  • fYear
    2014
  • fDate
    2-5 Dec. 2014
  • Firstpage
    117
  • Lastpage
    120
  • Abstract
    In this paper, we present a new practical background subtraction method taking advantages of the conventional codebook and GMM-based approaches. The fundamental idea is approximating GMM parameters based on color statistics of background pixels which are clustered by the computationally efficient codebook scheme. The experiments on real visual surveillance dataset demonstrate that the performance of the proposed method is excellent in the aspects of subtraction accuracy and processing time.
  • Keywords
    Gaussian processes; image coding; image colour analysis; image motion analysis; object detection; GMM parameter; Gaussian mixture model; background pixel; background subtraction method; codebook scheme; codebook-GMM model; color statistics; processing time aspect; subtraction accuracy aspect; visual surveillance dataset; Color; Computational modeling; Mathematical model; Object detection; Probabilistic logic; Surveillance; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control, Automation and Information Sciences (ICCAIS), 2014 International Conference on
  • Conference_Location
    Gwangju
  • Type

    conf

  • DOI
    10.1109/ICCAIS.2014.7020540
  • Filename
    7020540