DocumentCode
240258
Title
Background subtraction method using codebook-GMM model
Author
SeungJong Noh ; Deayoung Shim ; Moongu Jeon
Author_Institution
Sch. of Inf. & Commun., Gwangju Inst. of Sci. & Technol., Gwangju, South Korea
fYear
2014
fDate
2-5 Dec. 2014
Firstpage
117
Lastpage
120
Abstract
In this paper, we present a new practical background subtraction method taking advantages of the conventional codebook and GMM-based approaches. The fundamental idea is approximating GMM parameters based on color statistics of background pixels which are clustered by the computationally efficient codebook scheme. The experiments on real visual surveillance dataset demonstrate that the performance of the proposed method is excellent in the aspects of subtraction accuracy and processing time.
Keywords
Gaussian processes; image coding; image colour analysis; image motion analysis; object detection; GMM parameter; Gaussian mixture model; background pixel; background subtraction method; codebook scheme; codebook-GMM model; color statistics; processing time aspect; subtraction accuracy aspect; visual surveillance dataset; Color; Computational modeling; Mathematical model; Object detection; Probabilistic logic; Surveillance; Vectors;
fLanguage
English
Publisher
ieee
Conference_Titel
Control, Automation and Information Sciences (ICCAIS), 2014 International Conference on
Conference_Location
Gwangju
Type
conf
DOI
10.1109/ICCAIS.2014.7020540
Filename
7020540
Link To Document