DocumentCode
2406339
Title
Inverse problems for orthogonal matrices, Toda flows, and signal processing
Author
Faybusovich, L. ; Ammar, G.S. ; Gragg, W.B.
Author_Institution
Dept. of Math., Notre Dame Univ., IN, USA
fYear
1992
fDate
1992
Firstpage
1488
Abstract
The authors consider Toda flows induced on the set of orthogonal upper Hessenberg matrices. The explicit formulas for the evolution of Schur parameters are given. Since Schur parameters determine orthogonal Hessenberg matrices uniquely, an explicit description is obtained of the evolution of a given orthogonal Hessenberg matrix under the Toda flow
Keywords
inverse problems; matrix algebra; polynomials; signal processing; Schur parameters; Toda flows; explicit description; orthogonal matrices; signal processing; upper Hessenberg matrices; Autocorrelation; Eigenvalues and eigenfunctions; Fluid flow measurement; Frequency; Inverse problems; Mathematics; Polynomials; Signal processing; Symmetric matrices; White noise;
fLanguage
English
Publisher
ieee
Conference_Titel
Decision and Control, 1992., Proceedings of the 31st IEEE Conference on
Conference_Location
Tucson, AZ
Print_ISBN
0-7803-0872-7
Type
conf
DOI
10.1109/CDC.1992.371167
Filename
371167
Link To Document