• DocumentCode
    2410046
  • Title

    An efficient document classification algorithm based on kernel LDE

  • Author

    Sun, Xia ; Zhang, Qingzhou ; Wang, Ziqiang

  • Author_Institution
    Sch. of Inf. Sci. & Eng., Henan Univ. of Technol., Zhengzhou, China
  • fYear
    2009
  • fDate
    15-16 May 2009
  • Firstpage
    509
  • Lastpage
    511
  • Abstract
    To efficiently deal with document classification problem, an efficient document classification algorithm based on kernel local discriminant embedding (kernel LDE) is proposed in this paper. The high-dimensional document data are first mapped into lower-dimensional feature space, then the SVM classifier is applied to classify documents. The experimental results demonstrate that the proposed algorithm achieves much better performance than other traditional document classification algorithms.
  • Keywords
    classification; document handling; support vector machines; SVM classifier; document classification; kernel LDE; kernel local discriminant embedding; Classification algorithms; Information science; Kernel; Large scale integration; Linear discriminant analysis; Machine learning algorithms; Pattern recognition; Space technology; Support vector machine classification; Support vector machines; data mining; document classification; kernel machine; local discriminant embedding(LDE);
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Industrial Mechatronics and Automation, 2009. ICIMA 2009. International Conference on
  • Conference_Location
    Chengdu
  • Print_ISBN
    978-1-4244-3817-4
  • Type

    conf

  • DOI
    10.1109/ICIMA.2009.5156675
  • Filename
    5156675