DocumentCode :
2411772
Title :
Existence and uniqueness of optimal matrix scalings
Author :
Balakrishnan, V. ; Boyd, S.
Author_Institution :
Dept. of Electr. Eng., Stanford Univ., CA, USA
fYear :
1992
fDate :
1992
Firstpage :
2010
Abstract :
The authors show that the set of diagonal similarity scalings that minimize the scaled singular value of a matrix is nonempty and bounded if and only if the matrix that is being scaled is irreducible. For an irreducible matrix, they derive a sufficient condition for the uniqueness of the optimal scaling
Keywords :
matrix algebra; optimisation; diagonal similarity scalings; existence; irreducible matrix; optimal matrix scalings; scaled singular value minimization; uniqueness; Artificial intelligence; Contracts; Information systems; Laboratories; Sufficient conditions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1992., Proceedings of the 31st IEEE Conference on
Conference_Location :
Tucson, AZ
Print_ISBN :
0-7803-0872-7
Type :
conf
DOI :
10.1109/CDC.1992.371445
Filename :
371445
Link To Document :
بازگشت