DocumentCode :
2413431
Title :
Improving Spatial Semantic Analysis by a Combining Model
Author :
Li, Shiqi ; Zhao, Tiejun ; Li, Hanjing
Author_Institution :
Sch. of Comput. Sci. & Technol., Harbin Inst. of Technol., Harbin, China
fYear :
2010
fDate :
7-9 May 2010
Firstpage :
1430
Lastpage :
1433
Abstract :
This paper presents a combination base machine learning approach to spatial semantic analysis in Chinese. The model consists of multiple pre-training classifiers and a gating mechanism for integrating the outputs of these classifiers. Then we use EM algorithm to train the parameters of the combining model. Finally the experimental results show an overall improvement on the standard corpus CPB.
Keywords :
information analysis; learning (artificial intelligence); natural language processing; pattern classification; Chinese language; EM algorithm; combination base machine learning; combining model; gating mechanism; multiple pretraining classifiers; spatial semantic analysis; Classification algorithms; Labeling; Niobium; Semantics; Support vector machine classification; Training; classifier combination; mixture of experts; spatial semantic analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
E-Business and E-Government (ICEE), 2010 International Conference on
Conference_Location :
Guangzhou
Print_ISBN :
978-0-7695-3997-3
Type :
conf
DOI :
10.1109/ICEE.2010.363
Filename :
5591533
Link To Document :
بازگشت