DocumentCode :
2430338
Title :
Least-squares parameter set estimation for robust control design
Author :
Kosut, Robert L. ; Anderson, Brian D O
Author_Institution :
Integrated Syst. Inc., Santa Clara, CA, USA
Volume :
3
fYear :
1994
fDate :
29 June-1 July 1994
Firstpage :
3002
Abstract :
Two least-squares based methods are presented for obtaining ARX model sets. The first is obtained using properties of high-order ARX models and the second uses a stochastic embedding scheme on the residuals from an ARX model of any order. Either of the ARX model sets is useful for robust control of systems with uncertain parameters. Using the high order ARX model approach, the parameter uncertainty lies in a confidence ellipsoid. Using the stochastic embedding approach, the parameter uncertainty is in a confidence box. For scalar plants, both cases can be handled using convex programming to obtain the exact stability robustness margin for a particular controller. However, because the uncertainty description is probabilistic, the robustness property has to be associated with a confidence level, i.e., a probability of stability.
Keywords :
control system synthesis; convex programming; discrete time systems; least squares approximations; parameter estimation; probability; robust control; ARX model sets; confidence ellipsoid; convex programming; exact stability robustness margin; least-squares parameter set estimation; parameter uncertainty; residuals; robust control design; scalar plants; stochastic embedding scheme; uncertain parameters; Adaptive systems; Australia; Parameter estimation; Robust control; Robust stability; Robustness; Stochastic processes; Systems engineering and theory; Uncertain systems; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 1994
Print_ISBN :
0-7803-1783-1
Type :
conf
DOI :
10.1109/ACC.1994.735123
Filename :
735123
Link To Document :
بازگشت