DocumentCode
245113
Title
Metric Ranking of Invariant Networks with Belief Propagation
Author
Changxia Tao ; Yong Ge ; Qinbao Song ; Yuan Ge ; Omitaomu, Olufemi A.
Author_Institution
Xi´an JiaoTong Univ., Xi´an, China
fYear
2014
fDate
14-17 Dec. 2014
Firstpage
1001
Lastpage
1006
Abstract
The management of large-scale distributed information systems relies on the effective use and modeling of monitoring data collected at various points in the distributed information systems. A promising approach is to discover invariant relationships among the monitoring data and generate invariant networks, where a node is a monitoring data source (metric) and a link indicates an invariant relationship between two monitoring data. Such an invariant network representation can help system experts to localize and diagnose the system faults by examining those broken invariant relationships and their related metrics, because system faults usually propagate among the monitoring data and eventually lead to some broken invariant relationships. However, at one time, there are usually a lot of broken links (invariant relationships) within an invariant network. Without proper guidance, it is difficult for system experts to manually inspect this large number of broken links. Thus, a critical challenge is how to effectively and efficiently rank metrics (nodes) of invariant networks according to the anomaly levels of metrics. The ranked list of metrics will provide system experts with useful guidance for them to localize and diagnose the system faults. To this end, we propose to model the nodes and the broken links as a Markov Random Field (MRF), and develop an iteration algorithm to infer the anomaly of each node based on belief propagation (BP). Finally, we validate the proposed algorithm on both real-world and synthetic data sets to illustrate its effectiveness.
Keywords
Markov processes; belief networks; distributed processing; information systems; MRF; Markov random field; belief propagation; data source; invariant networks; large-scale distributed information systems; metric ranking; monitoring data; Belief propagation; Benchmark testing; Data models; Information systems; Measurement; Monitoring; Time series analysis; ARX Model; Belief Propogation; Invariant; Invariant Networks;
fLanguage
English
Publisher
ieee
Conference_Titel
Data Mining (ICDM), 2014 IEEE International Conference on
Conference_Location
Shenzhen
ISSN
1550-4786
Print_ISBN
978-1-4799-4303-6
Type
conf
DOI
10.1109/ICDM.2014.74
Filename
7023437
Link To Document