DocumentCode :
2454431
Title :
Critical compression ratio of iterative reweighted l1 minimization for compressed sensing
Author :
Matsushita, Ryosuke ; Tanaka, Toshiyuki
Author_Institution :
Grad. Sch. of Inf., Kyoto Univ., Kyoto, Japan
fYear :
2011
fDate :
16-20 Oct. 2011
Firstpage :
568
Lastpage :
572
Abstract :
1 minimization for compressed sensing provides a computationally efficient means to reconstruct sparse signals from linear measurements whose number is less than the dimension of the signal. Reconstruction from a smaller number of measurements can be possible via iterative reweighted ℓ1 minimization (IRL1). In this paper, adopting a statistical-mechanics approach, we propose an analytical framework for evaluating critical compression ratio, the ratio of the number of measurements to the dimension of the signal, for IRL1.
Keywords :
data compression; iterative methods; signal reconstruction; statistical analysis; IRL1; compressed sensisng; critical compression ratio; iterative reweighted minimization; linear measurements; sparse signal reconstruction; statistical-mechanic approach; Compressed sensing; Conferences; Equations; Gaussian distribution; Information theory; Minimization; Noise measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Workshop (ITW), 2011 IEEE
Conference_Location :
Paraty
Print_ISBN :
978-1-4577-0438-3
Type :
conf
DOI :
10.1109/ITW.2011.6089520
Filename :
6089520
Link To Document :
بازگشت