DocumentCode :
2459641
Title :
A Fast Spectral Method to Solve Document Cluster Ensemble Problem
Author :
Xu, Sen ; Lu, Zhimao ; Gu, Guochang
Author_Institution :
Coll. of Comput. Sci. & Technol., Harbin Eng. Univ., Harbin
fYear :
2008
fDate :
18-20 Oct. 2008
Firstpage :
180
Lastpage :
183
Abstract :
The critical problem in cluster ensemble is how to combine clusterers to yield a final superior clustering result. In this paper, we introduce a spectral method to solve document cluster ensemble problem. Since spectral clustering inevitably needs to compute the eigenvalues and eigenvectors of a matrix, for large scale document datasets, itpsilas computationally intractable. By using algebraic transformation to similarity matrix we get a feasible algorithm. Experiments on TREC and Reuters document sets show that our spectral algorithm yields better clustering results than other typical cluster ensemble techniques without high computational cost.
Keywords :
document handling; eigenvalues and eigenfunctions; matrix algebra; pattern clustering; Reuters document sets; TREC document sets; algebraic transformation; document cluster ensemble problem; fast spectral method; large scale document datasets; spectral clustering; Clustering algorithms; Computational efficiency; Diversity reception; Educational institutions; Eigenvalues and eigenfunctions; Large-scale systems; Machine learning algorithms; Matrix decomposition; Partitioning algorithms; Pattern analysis; cluster ensemble; clustering analysis; document clustering; spectral clustering;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer and Computational Sciences, 2008. IMSCCS '08. International Multisymposiums on
Conference_Location :
Shanghai
Print_ISBN :
978-0-7695-3430-5
Type :
conf
DOI :
10.1109/IMSCCS.2008.8
Filename :
4760320
Link To Document :
بازگشت