Title :
Tight information theoretic density bounds for sparse crossbar concentrators
Author :
Gunduzhan, Emre ; Oruc, A. Yavuz
Author_Institution :
Dept. of Electr. Eng., Maryland Univ., College Park, MD, USA
Abstract :
A sparse crossbar (n,m)-concentrator is a bipartite graph with n inputs and m outputs, m⩽n, in which there exists a matching between every m inputs and the m outputs. Using information theoretic arguments this paper shows that the density of sparse crossbar (n,m)-concentrators among all the 2nm sparse crossbars tends to 0 when m/n<1/2 and it tends to 1 when m/n>1/2
Keywords :
graph theory; information theory; sparse matrices; bipartite graph; information theoretic density bounds; inputs; outputs; sparse crossbar concentrator; Bipartite graph; Bismuth; Chebyshev approximation; Educational institutions; Linear matrix inequalities; Sparse matrices; Switches;
Conference_Titel :
Information Theory, 1998. Proceedings. 1998 IEEE International Symposium on
Conference_Location :
Cambridge, MA
Print_ISBN :
0-7803-5000-6
DOI :
10.1109/ISIT.1998.708764