• DocumentCode
    2471790
  • Title

    Nonparametric Bayesian attentive video analysis

  • Author

    Boccignone, Giuseppe

  • Author_Institution
    Natural Comput. Lab.-DIIIE, Univ. di Salerno, Fisciano, Italy
  • fYear
    2008
  • fDate
    8-11 Dec. 2008
  • Firstpage
    1
  • Lastpage
    4
  • Abstract
    We address the problem of object-based visual attention from a Bayesian standpoint. We contend with the issue of joint segmentation and saliency computation suitable to provide a sound basis for dealing with higher level information related to objects present in dynamic scene. To this end we propose a framework relying on nonparametric Bayesian techniques, namely variational inference on a mixture of Dirichlet processes.
  • Keywords
    Bayes methods; image segmentation; inference mechanisms; object detection; variational techniques; video signal processing; Dirichlet process mixture; dynamic scene; image saliency computation; joint image segmentation; nonparametric Bayesian attentive video analysis; object-based visual attention; variational inference; Acoustic noise; Background noise; Bayesian methods; Computational modeling; Focusing; Image motion analysis; Image sequences; Layout; Ontologies; Packaging;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
  • Conference_Location
    Tampa, FL
  • ISSN
    1051-4651
  • Print_ISBN
    978-1-4244-2174-9
  • Electronic_ISBN
    1051-4651
  • Type

    conf

  • DOI
    10.1109/ICPR.2008.4760948
  • Filename
    4760948