DocumentCode :
2475168
Title :
Gene regulation models and evolution
Author :
Sami Fadali, M. ; Savageau, M.
Author_Institution :
Electr. & Biomed. Eng., Univ. of Nevada, Reno, NV, USA
fYear :
2009
fDate :
10-12 June 2009
Firstpage :
1706
Lastpage :
1711
Abstract :
We examine the dynamics of gene regulation for a system with K environments with each environment favoring a different pattern of gene transcription and regulation in a prokaryotic organism. We recast the model of the system as discrete-time K-periodic. This allows us to exploit the well known properties of periodic systems to characterize the steady-state behavior of wild type versus mutant populations of the organism: We also obtain conditions on the parameters of the state matrix using the properties of positive linear systems. We examine in more detail the example of the lac operon of E. Coli which has two environments: a high demand environment H and a low demand environment L. The gene regulation system alternates between the two environments as the organism completes one life cycle. We derive conditions under which the system reaches steady growth alternating between a state xH and xL as each life cycle is completed. Our results show the dependence of the mutant to wild type ratio on the ratio of high demand to low demand duration.
Keywords :
discrete time systems; evolution (biological); genetics; linear systems; matrix algebra; time-varying systems; discrete-time K-periodic system; gene evolution; gene regulation dynamics model; gene transcription; mutant population; positive linear system; prokaryotic organism; state matrix; steady-state behavior; wild type; Biochemistry; Gene expression; Genetic mutations; Linear systems; Organisms; Proteins; Regulators; Senior members; Steady-state; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2009. ACC '09.
Conference_Location :
St. Louis, MO
ISSN :
0743-1619
Print_ISBN :
978-1-4244-4523-3
Electronic_ISBN :
0743-1619
Type :
conf
DOI :
10.1109/ACC.2009.5160562
Filename :
5160562
Link To Document :
بازگشت