• DocumentCode
    247994
  • Title

    Automatic blastomere detection in day 1 to day 2 human embryo images using partitioned graphs and ellipsoids

  • Author

    Singh, Ashutosh ; Buonassisi, John ; Saeedi, Parvaneh ; Havelock, Jon

  • Author_Institution
    Sch. of Eng. Sci., Simon Fraser Univ., Burnaby, BC, Canada
  • fYear
    2014
  • fDate
    27-30 Oct. 2014
  • Firstpage
    917
  • Lastpage
    921
  • Abstract
    Fertility specialists have linked the size, shape and position of blastomeres in humans embryos with the viability of such embryos. We propose an automatic blastomere identification and modeling approach in an attempt to aid physicians in determining embryo´s viability. The proposed method applies isoperimetric graph partitioning, succeeded by a novel region merging algorithm to Hoffman Modulation Contrast (HMC) embryo images, to approximate blastomeres positions. Ellipsoidal models are then used to approximate the shape and the size of each blastomere. We discuss experimental results on a dataset of 40 embryo images, and expand on the advantages and drawbacks of our method while comparing our method to other approaches.
  • Keywords
    biomembranes; cellular biophysics; data analysis; medical image processing; HMC embryo images; Hoffman modulation contrast; automatic blastomere detection; automatic blastomere identification; automatic blastomere modeling approach; blastomere position; blastomere shape; blastomere size; ellipsoidal model; embryo images dataset; embryo viability; human embryo images; isoperimetric graph partitioning; time 1 day to 2 day; Embryo; Entropy; Image edge detection; Image segmentation; Merging; Partitioning algorithms; Shape; Blastomere; Entropy; IVF; Isoperimetric Graph Partitioning; Region Merging; Vesselness;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Image Processing (ICIP), 2014 IEEE International Conference on
  • Conference_Location
    Paris
  • Type

    conf

  • DOI
    10.1109/ICIP.2014.7025184
  • Filename
    7025184