• DocumentCode
    2480915
  • Title

    On the asymptotics of the minimax redundancy arising in a universal coding

  • Author

    Szpankowski, Wojciech

  • Author_Institution
    Dept. of Comput. Sci., Purdue Univ., West Lafayette, IN, USA
  • fYear
    1998
  • fDate
    16-21 Aug 1998
  • Firstpage
    349
  • Abstract
    Let xn denote a sequence built over a finite alphabet A, and let P(xn;w) be the probability of xn generated by the source w. We define a uniquely decodable code φ(x n) of length |φ(xn)|=-logQ(xn) where Q(·) is an arbitrary probability distribution on An . The cumulative redundancy of the encoding xn at the output of a source w is defined as p(xnn,w):=-logQ(xn)+logP(xn ). Finally, let us consider a set of sources Ω, and define the minimax redundancy as pn(Ω):=infφnsupw∈Ω maxxn∈An{p(xnn,w)}. We study asymptotically ρn(Ω) for memoryless sources via analytic methods
  • Keywords
    decoding; memoryless systems; minimax techniques; probability; redundancy; sequential codes; source coding; analytic methods; asymptotics; cumulative redundancy; decodable code; encoding; memoryless sources; minimax redundancy; probability distribution; sequence; universal coding; Combinatorial mathematics; Computer science; Decoding; Ear; Equations; Information analysis; Information theory; Minimax techniques; Portfolios; USA Councils;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Theory, 1998. Proceedings. 1998 IEEE International Symposium on
  • Conference_Location
    Cambridge, MA
  • Print_ISBN
    0-7803-5000-6
  • Type

    conf

  • DOI
    10.1109/ISIT.1998.708954
  • Filename
    708954