• DocumentCode
    2483247
  • Title

    A Finite Dimensional Approximation of the shallow water Equations: The port-Hamiltonian Approach

  • Author

    Pasumarthy, Ramkrishna ; Van der Schaft, Arjan

  • Author_Institution
    Fac. of Electr. Eng., Math. & Comput. Sci., Twente Univ., Enschede
  • fYear
    2006
  • fDate
    13-15 Dec. 2006
  • Firstpage
    3984
  • Lastpage
    3989
  • Abstract
    We look into the problem of approximating a distributed parameter port-Hamiltonian system which is represented by a non-constant Stokes-Dirac structure. We here employ the idea where we use different finite elements for the approximation of geometric variables (forms) describing an infinite-dimensional system, to spatially discretize the system and obtain a finite-dimensional port-Hamiltonian system. In particular we take the example of a special case of the shallow water equations
  • Keywords
    approximation theory; computational fluid dynamics; distributed parameter systems; flow; multidimensional systems; distributed parameter port-Hamiltonian system; finite dimensional approximation; finite element approximation; geometric variables; infinite-dimensional system; nonconstant Stokes-Dirac structure; shallow water equations; Boundary conditions; Control systems; Distributed parameter systems; Finite element methods; Mathematics; Maxwell equations; Power system interconnection; Power transmission lines; Transmission line theory; USA Councils;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 2006 45th IEEE Conference on
  • Conference_Location
    San Diego, CA
  • Print_ISBN
    1-4244-0171-2
  • Type

    conf

  • DOI
    10.1109/CDC.2006.377022
  • Filename
    4177999